Dr. Taly Gilat-Schmidt, associate professor of biomedical engineering, and Dr. Josh Star-Lack, principal scientist of applied research at Varian, have received a $2,482,601 U01 grant from the National Institutes of Health to study Computed Tomography radiation dosages in patients. Their research is in collaboration with the Medical College of Wisconsin and Children’s Hospital of Wisconsin.
The four-year study involving Marquette and Varian, of Palo Alto, California, a leader in designing and manufacturing medical devices for treating cancer, aims to develop and verify a software tool to estimate the radiation dose delivered to a patient’s organs when he or she undergoes a CT examination. Approximately 76 million CT scans are performed in the United States each year and are responsible for half the radiation delivered to patients by medical procedures. However, existing automated tools to measure radiation dosage do not model a patient’s specific anatomy, which can introduce errors in the estimated radiation dose to organs.
The proposed software tool will provide accurate, rapid and personalized reporting of the radiation dose delivered to a patient’s organs as part of every CT scan. Gilat-Schmidt’s research will use expertise from the radiology and radiation oncology fields to develop algorithms that take into account scanner and anatomical complexities.
The dose estimation tool will be developed from a study of 500 pediatric CT data sets, providing valuable information about the magnitude and variation of pediatric CT dosage in clinical practice. As a result, an organ-dose database will be made available as a resource for clinical and technical research. Beyond the initial research, the software tool is expected to incorporate patient-specific organ doses and dose maps into electronic medical records for personalized reporting; minimize dosage given to individual patients; and develop databases to guide dosage protocol and epidemiological studies of organ dosage and cancer incidence in particular demographics.